Math 246B Lecture 21 Notes

Daniel Raban

March 5, 2019

1 Bloch's Theorem and Range of Meromorphic Functions

1.1 Bloch's theorem

We want to prove the following theorem.

Theorem 1.1 (Picard's little theorem). Let $f \in Hol(\mathbb{C})$ be entire and nonconstant. Then the range $f(\mathbb{C})$ omits at most 1 point of \mathbb{C} .

Remark 1.1. It is possible for the range to omit one point. $e^z \neq 0$ for all $z \in \mathbb{C}$.

Remark 1.2. There exists a topological proof of this fact, but it requires the machinery of covering spaces, so we will not visit it at this time.

Proposition 1.1. Let $f \in Hol(|z| < 1)$ be such that f(0) = 0, f'(0) = 1. If, furthermore, $|f| \le M$, then $f(\{|z| < 1\}) \supseteq D(0, 1/(4M))$.

We will write $D := \{ |z| < 1 \}.$

Remark 1.3. If M = 1, then f(D) = D by Schwarz's lemma.

Proof. Let $w \in \mathbb{C} \setminus f(D)$. Then $w \neq 0$, the function $1 - f/w \neq 0$ in D, and 1 = f/w = 1 at z = 0. Then there exists $g \in \text{Hol}(|z| < 1)$ such that $g^2 = 1 - f/w$ and g(0) = 1. Differentiate and let z = 0 to get 2g(0)g'(0) = -1/w. So g'(0) = -1/(2w), which gives the Taylor expansion

$$g(z) = 1 - \frac{z}{2w} + \cdots$$

Now given $h \in \text{Hol}(|z| < 1)$, we have $h = \sum_{n=0}^{\infty} a_n z^n$ and

$$\frac{1}{2\pi} \int_0^{2\pi} |h(re^{i\varphi})|^2 \, d\varphi = \sum_{n=0}^\infty |a_n|^2 r^{2n}.$$

for r < 1. In particular, apply this property to g. Then

$$\frac{1}{2\pi} \int_0^{2\pi} |h(re^{i\varphi})|^2 \, d\varphi \le ||g||_\infty^2 \le 1 + \frac{M}{|w|}$$

and

$$\sum_{n=0}^{\infty} |a_n|^2 r^{2n} \ge 1 + \frac{r^2}{4|w|^2}.$$

Sending $r \to 1$, we get $1/(4|w|^2) \le M/|w|$. That is, $|w| \ge 1/(4M)$.

Theorem 1.2 (A. Bloch). There exists an absolute constant $\ell > 0$ such that if $f \in Hol(|z| < 1)$ and f'(0) = 1, then the range of f(D) contains an open disc of radius ℓ .

Proof. Assume first that f is holomorphic near $|z| \leq 1$. Let Aut(D) be the set of holomorphic bijections $\varphi: D \to D$; this is the set of automorphisms of D:

$$\varphi \in \operatorname{Aut}(D) \iff \varphi(z) = \lambda \frac{z - \alpha}{1 - \overline{\alpha} z}$$

where $|\lambda| = 1$, and $\alpha \in D$. We have

$$(1 - |z|^2)|\varphi'(z)| = 1 - |\varphi(z)|^2$$

for all $\varphi \in \operatorname{Aut}(D)$. Define $B(f, z) = (1 - |z|^2)|f'(z)|$ when $z \in D$. For any $\varphi \in \operatorname{Aut}(D)$,

$$B(f \circ \varphi, z) = (1 - |z|^2)|f'(\varphi(z))||\varphi'(z)| = (1 - |\varphi(z)|)^2|f'(\varphi(z))| = B(f, \varphi(z)).$$

The function $B(f, \cdot)$ is continuous in D, nonnegative, and equal to 0 on ∂D . Let $a \in D$ be such that B achieves its maximum at a.

Assume first that a = 0. Then $|f'(z)| \le 1/(1-|z|^2)$ for |z| < 1 for |z| < 1. We get

$$|f(z) - f(0)| = \left| \int_0^1 \frac{d}{dt} f(tz) \, dt \right| \le \frac{|z|}{1 - |z|^2}, \qquad |z| < 1.$$

If $|z| \leq R < 1$, we get

$$|f(z) - f(0)| \le \frac{R}{1 - R^2} = M.$$

Apply the previous proposition to (f(Rz) - f(0))/R, which is a holomorphic function bounded by M/R. Then f(D) contains an open disc of radius $R\frac{1}{4(M/R)} = R^2/(4M) = R(1-R)^2/4$. This is true for any 0 < R < 1, so the optimal choice of R is $\sqrt{3}/3$. The corresponding radius is $\sqrt{3}/18$.

In general, we may have $a \neq 0$. Let $\psi \in \operatorname{Aut}(D)$ be such that $\psi(0) = a$. Consider $g = f \circ \psi$. Then

$$B(g, z) = B(f, \psi(z)) \le B(f, a) = B(g, 0),$$

by pulling back using ψ and the conformal invariance of B. Note that the right hand side equals |g'(0)|, so $|g'(0)| \ge 1$. The previous discussion can be applied to the function (g(Rz) - g(0))/(Rg'(0)). So the g(D) contains an open disc of radius $\sqrt{3}18|g'(0)| \ge \sqrt{3}18$. Since g(D) = f(D), we get the result, if f is holomorphic near $|z| \le 1$.

In general, let $f_{\rho}(z) = (1/\rho)f(\rho z)$, where $0 < \rho < 1$. Then $f_{\rho}(D)$ contains a fixed disc. Then $f(D) \supseteq \rho f_{\rho}(D)$, which contains a disc of radius $\rho \sqrt{3}/18$. Pick any such ρ to get the theorem.

-	_	_	

1.2 Range of meromorphic functions

We will use Bloch's theorem to prove Picard's little theorem next time. Here is a corollary of Picard's theorem.

Corollary 1.1. Let f be meromorphic in \mathbb{C} and nonconstant. Then f assumes all values in \mathbb{C} with at most 2 exceptions.

Proof. Assume f does not take on the distinct values $a, b, c \in \mathbb{C}$. Let g(z) = 1/(f(z) - c). This is holomorphic away form the poles of f. The singularities at the poles of f are removable for g, so g can be extended to an entire holomorphic function. Its range omits 2 values: 1/(a-c) and 1/(b-c). So g is constant by Picard's little theorem.

Example 1.1. Let

$$f(z) = \frac{1}{e^z + 1}.$$

This function omits the values 0, 1.

Example 1.2. Suppose we try to solve $f^n + g^n = 1$ with $n \ge 3$. This equation has no nonconstant solution by this corollary to Picard's little theorem.